Spruce Lake Elderhostel OBSERVING THE NIGHT SKY Robert C. Newman June 1-6, 1997 Biblical Seminary

1. EARTH AND SKY

Climate at Philadelphia, lat 39°56'58"N; long 75°09'21"W Normal monthly temperature: 30-yr averages

month	1961-90	1951-80
Januarv	30	31
February	33	33
March	42	42
April	52	53
Мау	63	63
June	72	72
July	77	77
August	76	75
September	68	68
October	56	57
November	46	46
December	36	36
(From 1997	World Almar	nac)

Sunrise/Sunset at Phila (40N, 75W)

Note: maxima and minima (bold) show earth's orbit not circular

1

date		sunrise	sunset
Jan	1	7:22	16 : 46
Jan	15	7:20	16 : 59
Feb	1	7:09	17:19
Feb	14	6 : 54	17 : 35
Mar	1	6 : 34	17 : 52
Mar	15	6:12	18:07
Apr	1	5:44	18:24
Apr	15	5:22	18:38
May	1	5:00	18 : 55
May	15	4:45	19:08
Jun	1	4:33	19:23
Jun	15	4:31	19 : 30
Jul	1	4:35	19:33
Jul	15	4:44	19:28
Aug	1	4:58	19:14
Aug	15	5:11	18 : 57

Sunrise & Sunset 1997

Why is the sky blue in the daytime and black at night?

Why is the sun red when it rises and sets?

Sep	1	5:28	18:32
Sep	15	5:41	18:09
Oct	1	5:56	17:42
Oct	15	6:10	17:21
Nov	1	6:29	16 : 58
Nov	15	6:46	16:43
Dec	1	7:03	16:35
Dec	15	7:15	16:36
(Fro	om 1997	World	Almanac)

Horizon

On an ideal smooth, spherical earth, our horizon is where a flat, broad cone with apex at our eye height tangentially touches the surface of the earth.

Can you see farther in the daytime or at night?

How far can you see?

The extremes:

- At eye height approaching infinity, cone becomes a cylinder, so we can see one full half of the earth; with earth's circumference c25 K mi, this means horizon is about 1/4 this distance, 6250 mi.
- At eye height approaching zero, cone becomes a flat plane, can see virtually none of earth, so horizon is basically zero.

On the real earth, neither smooth not exactly spherical, horizon distance will vary in different directions due to details of relief and various obstacles (vegetation, buildings, etc.). If viewpoint is above local roughness, result is simpler, but will still depend on roughness near horizon in each direction.

Ideal calculation:

Let h = local ht of observer, R = radius of earth, D = distance to horizon; then since tangent point is a right angle, by Pythagoras' theorem:

Calculating the distance (D) to the horizon for an observer at height h

 $(h + R)^{2} = R^{2} + D^{2}$ $h^{2} + 2hR + R^{2} = R^{2} + D^{2}$ $h^{2} + 2hR = D^{2}$ $D = SQRT (h^{2} + 2 hR)$


```
Example:
     Let h = 5 ft, i.e., observer standing on surface.
          R = 4000 \text{ mi}; h = .001 \text{ mi}
     for h \ll R, equation simplifies to D = SQRT (2hR)
     D = SQRT (2x.001x4000) = SQRT (8) = 2.74 mi
        Table: Ideal Horizon for Various Heights
     R (earth) = 3963.2 mi; h (in miles)
     D = SQRT (7926.4h) = 89 SQRT(h)
     ht of observer (h) horizon dist (D)
           5 ft.
                                     2.7 mi
          10 ft
                                     3.9 mi
                                    12.3 mi
         100 ft
        1000 ft
                                    38.7 mi
                                    89 mi
           1 mi
                                    126 mi
          10 mi
         100 mi
                                    890 mi
```

Earth's Rotation

Earth rotates on its axis once in 24 hours. A complete rotation is 360° , so rotation rate is $360^{\circ}/24$ hr = $15^{\circ}/hr$, which is $15^{\circ}/hr/60$ min/hr = 1/4 deg/min or 4 min/deg.

Since the apparent diameter of both the sun and moon as viewed from the earth is about 1/2 degree, the sun and moon appear to move across the sky at about about one diameter every two minutes.

If the sun or moon sets vertically compared to the horizon, then (ignoring effects of refraction by the atmosphere), the time of setting from when the lower edge first touches the horizon until the upper edge disappears would be about 2 minutes.

But the sun, etc. does not set vertically as far north as we are. Have to calculate the tilt of our horizon and such. If we take the horizon tilt to be zero at the equator and 90° at the north pole, then our tilt at a given latitude will be equal to that of the

latitude, so at Phila, tilt = 40 deg. This is fixed relative to the equator, as long as the earth does not shift its pole of rotation, or No Amer continent move too far.

The sunset angle, however, varies with the season, since the earth's axis faces toward the sun in summer and away in winter. The angle of the earth's axis is about $23^{\circ}27'$ or 232 deg. At the spring and fall equinoxes, the direction to the sun and the equator are aligned, so the sunset angle (measured from the vertical) will be the same, or measured from the horizontal, SS = 90 - lat. For Phila, this will be SS = 50°. The two extremes are the winter solstice and the summer solstice, which are 232° smaller and larger than this.

	Philadelphia, 40 deg N lat
Date	Angle sun makes w/ horizon at rising/setting
Mar 21	50°
Jun 21	73 2 °
Sep 21	50°
Dec 21	26 2 °

Measuring Angles

Since the distance to the sky is indeterminate, distances on the celestial sphere are measured as angles rather than miles (or whatever). Standing on the surface of the earth, with no high hills or such around, it is about 90° from the horizon to the zenith, or 180° from one horizon to the horizon opposite.

For smaller angles, it is convenient (if not terribly accurate) to use your anatomy for making measurements. Say the distance from your eye to your stretched out thumb is about 24" or two feet. And that your spread-out hand (span) is 9" from thumb to tip of small finger, that your palm width (without counting thumb) is 3" and your thumb width is 3/4".

Then, since the angle marked out by an object of length L at length L away is about $70^\circ,$ then

Rules of Thumb				
Span	26°			
Palm	9°			
Thumb	2°			

So your outstretched thumb marks off about 4 times the width of the sun or moon, about the distance (at the equator) that the celestial sphere turns in 8 minutes. You palm marks off the distance it turns in about half an hour (actually 36 min). Two spans mark off a 45° angle. The sun or moon is about the size of the cross section of a pencil at arm's length.

Our Moon:

Moon:

Radius = 1738 km = 1080 mi Mass = 7.32×10^{25} g = 7×10^{19} mT = 80 quintillion tons Orbit = Distance from earth = 385,000 km = 239,000 mi

The Planets:

Earth:

Radius = 6378 km = 3963 mi . 4000 mi Mass = 5.997×10^{27} g . 6×10^{21} mT = 6.6 sextillion tons Gravity = 9.8 m/sec^2 = 32 ft/sec^2 Orbit = 1 AU = 149.6 million km . 93 million mi

Planet	a (AU)	Orbit. Period	Rot. Period	Mass*	Radius*	Density+	Surface Gravity*	Known Moons
Mercury	0.39	88d	58.7d	.055	.382	5.4	.377	0
Venus	0.72	225d	243d	.815	.949	5.3	.905	0
Earth	1.00	365d	23.9h	1.00	1.00	5.5	1.00	1
Mars	1.52	1.88y	24.6h	.107	.533	3.9	.377	2
Juptier	5.20	11.9y	9.92h	318	11.2	1.3	2.54	16+
Saturn	9.54	29.5y	10.7h	95.2	9.45	0.7	1.07	19+
Uranus	19.2	84y	17.3h	14.5	4.10	1.2	.869	15
Neptune	30.1	165y	16.1h	17.0	3.90	1.7	1.14	8
Pluto	39.4	248y	6.4d	.003	.18	2.0	.07	1

*cp earth's +cp density of water

Source: David Morrison, The Planetary System (Astronomical Society of the Pacific, 1989)

Other Moons (Satellites):

Planet	Moon	a (km)	period (days)	mass*	radius (km)
Earth	Moon	385,000	27.3	1.00	1738
Mars	Phobos	9,380	0.319	1.3 [-7]	12i
	Deimos	23,500	1.26	2.7 [-8]	7.5i
Jupiter	lo	422,000	1.77	1.2	1816
	Europa	671,000	3.55	0.66	1569
	Ganymede	1,070,000	7.16	2.0	2631
	Callisto	1,883,000	16.7	1.5	2400
Saturn	Mimas	186,000	0.942	.0005	197
	Enceladus	238,000	1.37	.001	251
	Tethys	295,000	1.89	.01	524
	Dione	377,000	2.74	.014	560
	Rhea	527,000	4.52	.034	765
	Titan	1,220,000	16.0	1.8	2575
	Hyperion	1,481,000	21.3	?	135i
	lapetus	3,561,000	79.3	.026	718
	Phoebe	12,950,000	550r	?	110
Uranus	Miranda	130,000	1.41	.001	243
	Ariel	191,000	2.52	.02	580
	Umbriel	266,000	4.14	.02	600
	Titania	436,000	8.71	.05	805
	Oberon	583,000	13.5	.04	775
Neptune	Triton	354,600	5.88r	0.8	1430
	Nereid	5,510,700	359	2 [-8]	470
Pluto	Charon	19,700	6.39	.02	600

*cp our moon's [-n] means times -n powers of 10 r = retrograde i = irregular Source: Morrison, *Planetary System*

3. SUN AND STARS

A star is a huge ball of gas held together by its own gravity. Our sun is a star, by far the nearest one to us.

Because gravity is a spherically symmetric force, a star is spherical, except for a larger or smaller bulge at its equator, depending on how fast it is spinning.

The force of gravity heats up the gas inside the star, until it reaches a temperature high enough to turn on a nuclear reaction by which hydrogen is converted to helium. Thereafter the star produces light and heat from the energy produced by this reaction until the hydrogen in its core is exhausted. Stars getting their energy from hydrogen are called Main Sequence stars.

Principal Stellar Classes of Stars					
Туре	Class	Surface Temp (deg K)	Example		
Hottest, bluest	0	40,000	Alnitak (zeta Orionis)		
Bluish	В	18,000	Spica (alpha Virginis)		
Bluish-white	А	10,000	Sirius (alpha Can Maj)		
White	F	7,000	Procyon (alpha Can Min)		
Yellowish-white	G	5,500	Sun		
Orangish	к	4,000	Arcturus (alpha Bootes)		
Coolest, reddest	М	3,000	Antares (alpha Scorpii)		

Source: Wm K Hartmann, Astronomy: the Cosmic Journey (Wadsworth, 1989)

The (17) Brightest Stars as Seen from Earth					
Star Name (Constellation)	Apparent Magnitude	Luminosity (cp sun)	Туре	Radius (cp sun)	Distance (light yr)
Sun	-26.7	1.0	Main seq	1.0	0.0
Sirius (Can Maj)	-1.4	23	Main seq	1.8	8.8
Canopus (Carina)	-0.7	(1400)	Supergiant	30	110
Arcturus (Bootes)	-0.1	115	Red giant	(25)	36
Rigel Kent (Centaurus)	0.0	1.5	Main seq	1.1	4.3
Vega (Lyra)	0.0	(58)	Main seq	(3)	27
Capella (Auriga)	0.1	(90)	Red giant	13	46
Rigel (Orion)	0.1	(60,000)	Supergiant	(40)	(910)
Procyon (Can Min)	0.4	6	Main seq	2.2	11
Archernar (Eridanus)	0.5	(650)	Main seq	(7)	120
Hadar (Centaurus)	0.7	(10,000)	Supergiant	(10)	490
Betelgeuse (Orion)	0.7	10,000	Supergiant	800	520
Altair (Aquila)	0.8	(9)	Main seq	1.5	16
Aldebaran (Taurus)	0.9	125	Red giant	(40)	68
Acrux (So Cross)	0.9	(2500)	Main seq	(3)	(360)
Antares (Scorpius)	0.9	(9000)	Supergiant	(600)	(520)
Spica (Virgo)	1.0	(2300)	Main seq	8	274

Source: Hartmann, *Astronomy*; numbers in parentheses are estimates.

Some Prominent Star Clusters						
	Name	Distance (ly)	Diameter (ly)	Mass (sun = 1)	Age (yr)	
Open Clusters	Ursa Major	68	23	300	200M	
	Hyades	137	16	300	500M	
	Pleiades	415	13	350	100M	
	Beehive (M44)	518	13	300	400M	
Globular Clusters	M4	6500	30	150,000	1.4B	
	M13	21500	35	660,000	1.4B	
	M5	25000	40	850,000	1.4B	
	M3	32500	42	1,100,000	1.4B	

Source: Hartmann, Astronomy

4. THE GALAXIES

A galaxy is a much larger collection of stars than an open or even a globular cluster, which are parts of galaxies. Galaxies were once called nebulae, then later, "island universes."

Our galaxy has been called "the Milky Way" since ancient times, long before we knew what it was. It is shaped rather like two fried eggs laid back-to-back, or a pair of marching-band cymbals, that is, a rather flat disk of stars with a flattenedroundish bulge of stars in the center. It appears to be about 100,000 ly across the disk, which is perhaps only 10,000 ly thick. The bulge is perhaps 30,000 ly thick by 40,000 wide. The disk has very prominent spiral arms characterized by dust clouds and young, bright stars.

Distances to Objects in the Milky Way Galaxy				
Destination	Distance (ly)			
Nearest star beyond Sun	4.2			
Sirius	8.8			
Vega	26			
Hyades cluster	137			
Pleiades cluster	415			
Central part of our spiral arm (Orion)	1300			
Orion nebula	1500			
Vertical distance to leave disk	3300			
Next-nearest spiral arm (Sagittarius)	3900			
Center of galaxy	30,000			
M13 globular cluster	36,000			
Far edge of galaxy	78,000			

Source: Hartmann, Astronomy

Types of Galaxies					
Name	Symbol	Shapes	Subclasses	Frequency	
Elliptical	E	spherical to flat disk; both giant and dwarf	E0 -> E7+S0: less -> more flattened	giant 5% dwarf 50%	
Spiral	S	disk w/ spiral arms	Sa -> Sc: smaller center, more open arms	20%	

Barred spiral	SB	bar connects center and arms	SBa -> SBc: same tendencies as regular spirals	
Irregular	Irr	no standard shape	none	25%

5. THE UNIVERSE

What is the universe? Is it "all that is, or ever was, or ever will be" (Carl Sagan)? We don't know. We could define it by Sagan's definition, but that might be misleading. We're inside, and don't know how big it is. The visible part apparently had a beginning at the big bang.

What we do know:

1. The universe is big. The distances to stars are measured in light years (6 trillion miles each) or parsecs (3.26 ly). The distances to globular clusters in thousands of light years (or kiloparsecs), to galaxies in millions of light years (or megaparsecs), the distances to the most distant observable objects (galaxies and quasars) in billions of light years (or gigaparsecs). Thus the universe is at least billions of trillions (i.e., quintillions) of miles in radius.

2. The visible universe cannot be both infinitely large and infinitely old. Because the sky is dark at night! The socalled Olbers' Paradox shows that if the universe is infinitely old and infinitely large (with a reasonably uniform distribution of stars) the light from the stars falling on the earth ought to be infinite or (at least) very bright. Because the sky (ignoring city lights, etc.) is instead rather dark, the stars must come to an end before their images cover every speck of the sky (so the universe is not infinite), OR the really distant stars whose images would cover every speck of the sky have not been burning long enough for their light to get here yet (so the universe hasn't always existed).

3. The visible universe is probably only some 10-20 billion years old. This appears to be the case for several reasons:
a. The most distant objects we can see are only about 10 billion ly away;
b. The age of the globular clusters is some 10-15 billion years;

- c. The expansion rate of the universe would suggest that it was once very hot and compact some 10-20 billion years ago;
- d. The age of the earth and sun is some 5 billion years, and the sun does not appear to be a first generation star.

4. The universe shows every evidence of being very carefully designed to be able to support life.

The "Fine Tuned" Universe				
Item	Consequences if larger	Consequences if smaller		
Strong nuclear force constant	no hydrogen	nothing but hydrogen		
Weak nuclear force constant	too much He; no heavy elements*	too little He; no heavy elements*		
Gravitational force constant	stars too hot, burn too fast	stars too cool, no heavy elements		
Electromagnetic force constant	insufficient chemical bonding	insufficient chemical bonding		
Ratio of e-m to gravity	no stars less than 1.4 solar masses	no stars more than .8 solar masses		
Ratio of electron to proton mass	insufficient chemical bonding	insufficient chemical bonding		
Ratio of ## of protons to electrons	e-m dominates grav; no stars	e-m dominates grav; no stars		
Expansion rate of universe	no galaxy formation	univ collapses quickly		
Entropy level of universe	no proto-galaxy formation	no star formation		
Mass density of universe	too much H-2, stars burn too fast	too little He & heavy elements		
Velocity of light	stars too luminous	stars not luminous enough		
Age of universe	no solar-type stars in right places	solar-type stars not yet formed		
Initial uniformity of radiation	stars, clusters, galaxies not formed	universe mostly black holes		
Fine structure constant	DNA doesn't work; stars too small	DNA doesn't work; stars too large		
Average distance betw galaxies	insuff gas to continue star formation	sun's orbit too disturbed		
Average distance betw stars	too few heavy elements for planets	planetary orbits unstable		
Decay rate of proton	life exterminated by decay radiation	insuff matter for life		
Energy level ratio C-12 to O-16	insufficient oxygen	insufficient carbon		
Ground state energy level of He-4	insufficient O and C	insufficient O and C		
Decay rate of Beryllium-8	stars explode catastrophically	no elements heavier than Be		
Mass excess: neutron over proton	n's decay, too few heavy elements	p's decay, stars collapse		
Initial excess nucleons to anti-nuc	too much rad for planet formation	not enough matter for stars		
Polarity of water molecule	heat of fusion, vap too gt for life	heats too small; ice won't float		
Ratio of exotic to ordinary matter	univ collapse before solar-type stars	no galaxies formed		

*outside stars; source: Ross, Creator and Cosmos, 118-121.

5. Our earth-sun environment appears to be unique and even

designed. The following characteristics of a planet, its moon, its star, its galaxy, must have values falling within narrowly

defined ranges for life of any kind to exist. 1. galaxy type too elliptical: star formation ends before enough heavy elements for life chemistry too irregular: radiation exposure too high on occasion, heavy elements for life chem not available 2. supernova eruptions too close: life on planet exterminated too far: not enough heavy elements to form rocky planets too frequent: life on planet exterminated too infrequent: not enough heavy elements to form rocky planets too late: life on planet exterminated too soon: not enough heavy elements to form rocky planets 3. white dwarf binaries too few: insuff fluorine for life chemistry to proceed too many: planetary orbits disrupted too soon: not enough heavy elements to make fluorine too late: flourine formed too late to be incorporated into planet 4. parent star distance from center of galaxy farther: heavy elements insuff for rocky planets closer: too much galactic radiation; planetary orbits disturbed by large number of stars 5. number of stars in planetary system more than one: plantary orbits disrupted less than one: not enough heat for life 6. parent star birth date more recent: star not yet in stable-burning phase; too many heavy elements less recent: not enough heavy elements 7. parent star age older: luminosity would change too quickly younger: luminosity would change too quickly 8. parent star mass greater: luminosity too variable; star burns too rapidly less: life zone too narrow; tides slow rotation too much; uv radiation insufficient for photosynthesis 9. parent star color

redder: photosynthesis too weak
bluer: photosynthesis too weak

10. parent star luminosity change increases too soon: runaway greenhouse effect increases too late: runaway glaciation

11. planet's surface gravity
larger: atm retains too much ammonia, methane
smaller: atm loses too much water

12. planet's distance from parent star further: too cool for stable water cycle closer: too warm for stable water cycle

13. inclination of planetary orbit too great: temperature differences too extreme

14. eccentricity of planetary orbit too great: seasonal temperature differences too extreme

15. axial tilt of planet greater: surface temperature differences too great less: surface temperature differences too great

16. rotation period of planet
longer: diurnal temperature differences too great
shorter: wind velocities too great

17. rate of change in rotation period larger: surface temperature range necessary for life not sustained smaller: surface temperature range necessary for life not sustained

18. age of planet too young: planet would rotate too rapidly too old: planet would rotate too slowly

20. thickness of planet's crust thicker: too much oxygen lost to crust thinner: too much volcanic & tectonic activity 21. reflectivity of planet greater: runaway glaciation less: runaway greenhouse

22. collision rate with asteriods and comets greater: too many species wiped out less: too few minerals needed for life in crust

23. ratio of oxygen to nitrogen in atmosphere larger: advanced life functions proceed too quickly smaller: advanced life functions proceed too slowly

24. carbon dioxide level in atmosphere greater: runaway greenhouse effect less: plant photosynthesis too low

25. water vapor level in atmosphere greater: runaway greenhouse effect less: too little rainfall for advanced land life

26. atmospheric electric discharge rate greater: too much destruction from fire less: too little nitrogen fixed in soil

27. ozone level in atmosphere greater: surface temperatures too low less: surface temps too high; too much uv at surface

28. quanity of oxygen in atmosphere greater: plants, hydrocarbons burn too easily less: too little for advanced animals to breathe

29. activity of tectonic plates greater: too many life forms destroyed less: nutrients lost by river runoff not recycled

30. ratio of oceans to continents greater: diversity, complexity of life forms limited smaller: diversity, complexity of life forms limited

32. soil mineralization too nutrient poor: diversity, complexity of life forms limited

too nutrient rich: diversity, complexity of life forms limited
33. gravitational interaction of planet with moon
greater: tidal effects on oceans, atmosphere and rotation period
would be too severe
less: climatic instability; movement of nutrients betw
continents and oceans restricted; magnetic field too
weak
Probability of getting all these in right range for a given
planet is 1 in 10 to 53rd power!

Source: Ross, Creator and Cosmos, 131-145.