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Introduction 
 

Artificial Life (AL) is a rather new scientific discipline, which didn't really get going 
until the 1980s.1  Unlike biology, it seeks to study life not out in nature or in the laboratory, but 
in the computer.2  AL seeks to mimic life mathematically, and especially to generate known 
features of life from basic principles (Langton, 1989b, pp 2-5).  Some of the more gung-ho 
specialists in AL see themselves as creating life in the electronic medium (Ray, 1994, p 180); 
others think they are only imitating it (Harnad, 1994, pp 544-49).  Without addressing this 
particular question, theists can at least agree that life does not have to be manifested in biochem-
istry. 
 

Those who believe in metaphysical naturalism C that "the Cosmos is all that is, or ever 
was, or ever will be" C must presume a purely non-supernatural origin and development of life, 
unguided by any mind.  For metaphysical naturalism, no other kind of causality really exists.  
Theists, by contrast, believe that a mind C God C is behind it all, however He worked.  Perhaps 
God created matter with built-in capabilities for producing life; perhaps He imposed on matter 
the information patterns characteristic of living things; perhaps He used some combination of 
these two.  
 

Current naturalistic explanations of life may generally be characterized by three basic 
claims.  First, that life arose here on earth or elsewhere without any intelligent oversight C a self-
reproducing system somehow assembled itself.  Second, that the (essentially blind) Darwinian 
mechanism of mutation and natural selection, which then came into play, was so effective that it 
produced all the variety and complexity we see in modern life-forms.  Third, the time taken for 
the assembly of the first self-reproducer was short enough, and the rate at which mutation and 
natural selection operates is fast enough, to account for the general features of the fossil record 
and such particulars as the "Cambrian explosion."  A good deal of AL research seems aimed at 
establishing one or more of these claims. 
 

What sort of world do we actually live in?  The "blind-watchmaker" universe of 
metaphysical naturalism, or one structured by a designing mind?  It is to be hoped that research 
in AL can provide some input for answering this question.  
 

Meanwhile, the field of AL is already large and is rapidly growing larger.  I have neither 
the expertise nor the space to give a definitive picture of what is happening there.  Here we will 
try to whet your appetite and provide some suggestions for further research by looking briefly at 

                     
 1. See Langton (1989b, pp 6-21) for the "prehistory" of artificial life studies. 

 2. Taylor and Jefferson (1994, pp 1-4) would define artificial life more broadly, to include 
synthetic biochemistry and robotics; so too Ray (1994, pp 179-80). 
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several proposals from AL to see how they are doing in the light of the naturalistic claims 
mentioned above.  First, we shall look at the cellular automata devised by von Neumann, Codd, 
Langton, Byl and Ludwig, both as regards the origin of significant self-reproduction and the 
question of how life might develop from these.  Second, we will sketch Mark Ludwig's work on 
computer viruses, which he suggests are the nearest thing to artificial life that humans have yet 
devised.  Third, we will examine one of Richard Dawkins' programs designed to simulate natural 
selection.  Fourth, we will look at Thomas Ray's "Tierra" environment, which seeks to explore 
the effects of mutation and natural selection on a population of electronic creatures.   
 
Cellular Automata 
 

Beginning nearly half a century ago, long before there was any discipline called AL, 
computer pioneer John von Neumann sought to investigate the question of life's origin by trying 
to design a self-reproducing automaton.  This machine was to operate in a very simplified 
environment to see just what was involved in reproduction.  For the building blocks of this 
automaton, von Neumann decided on computer chips fixed in a rigid two-dimensional array 
rather than biochemicals swimming in a three-dimensional soup.  [In practice, his machine was 
to be emulated by a single large computer to do the 
work of the many small computer chips.] 
 

Each computer chip is identical, but can be 
made to behave differently depending on which of 
several operational states it is currently in.  Typically 
we imagine the chips as wired to their four nearest 
neighbors, each chip identifying its current state via a 
number on a liquid crystal display like that on a 
wristwatch.  The chips change states synchonously in 
discrete time-steps rather than continuously.  The 
state of each chip for the next time-step is determined 
from its own current state and those of its four 
neighbors using a set of transition rules specified by the 
automaton's designer.   
 

The idea in the design of a self-reproducing 
automaton is to set up an initial array of states for some 
group of these chips in such a way that they will turn a 
neighboring set of chips into an information channel, 
and then use this channel to "build" a copy of the 
original array nearby.  
 

Von Neumann in the late '40s and early '50s 
attempted to design such a system (called a cellular automaton) that could construct any 
automaton from the proper set of encoded instructions, so that it would make a copy of itself as a 
special case.  But he died in 1957 before he could complete his design, and it was finished by his 
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associate Arthur Burks (von Neumann, 1966).  Because of its complexity C some 300x500 chips 
for the memory control unit, about the same for the constructing unit, and an instruction "tape" of 
some 150,000 chips C the machine von Neumann designed was not built. 
 

Since von Neumann's time, self-reproducing automata have been greatly simplified.  E. 
F. Codd (1968) reduced the number of states needed for each chip from 29 to 8.  But Codd's au-
tomaton was also a "universal constructor" C able to reproduce any cellular automaton including 
itself.  As a result, it was still about as complicated as a computer. 
 

Christopher Langton (1984) made the real break-through to simplicity by modifying one 
of the component parts of Codd's automaton and from it producing a really simple automaton 
(shown below) that will reproduce itself in 151 time-steps.  It reproduces by extending its arm 
(bottom right) by six units, turning left, extending it six more units, turning left, extending six 
more, turning left a third time, extending six more, colliding with the arm near its beginning, 
breaking the connection between mother and daughter, and then making a new arm for each of 
the two automata.  Langton's automaton, by design, will not construct other kinds of cellular au-
tomata as von Neumann's and Codd's would.  His device consisted of some 10x15 chips, 
including an instruction tape of 33 chips, plus some 190 transition rules. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Just a few years later, John Byl (1989a, b) simplified Langton's automaton further (see 

below) with an even smaller automaton that reproduced in just 25 time-steps.  Byl's automaton 
consisted of an array of 12 chips C of which 4 or 5 could be counted as the instruction tape C and 
43 transition rules. 
 

                     
 3. A forthcoming article (Pesavento, 1995) announces the recent implementation of von 
Neumann's machine. 
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Most recently, Mark Ludwig (1993, pp. 107-108) has apparently carried this simpli-

fication to its limit with a miniscule automaton that reproduces in just 5 time-steps.  This 
automaton consists of 4 chips, only one of which is the instruction "tape," and some 22 transition 
rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is interesting to note that the information contained in each of these self-reproducing 
automata may be divided into three parts:  (1) the transition rules, (2) the geometry of the chips, 
and (3) the instruction tape.  (1) The transition rules, which tell us how state succeeds state in 
each chip, somewhat resemble the physics or chemistry of the environment in the biological ana-
logue.  (2) The geometry of the automaton would correspond to the structure of a biological cell. 
 (3) The instructions resemble the DNA.  Thus these automata have a division of information 
which corresponds to that found in life as we know it on earth.  In both cases self-reproduction 
depends not only on an instruction set, but also upon the structure of the reproducer and the 
nature of the physical realm in which it operates. 
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For the von Neumann and Codd automata, since they are universal constructors, the size 

of the machine and its instructions are enormous!  One could not seriously entertain a naturalistic 
origin of life if the original self-reproducing system had to have anything like this complexity. 

The smaller automata look much more promising, however.  Perhaps a self-reproducing 
biochemical system at this level of complexity could have arisen by a chance assembly of parts.  
In a previous paper (Newman, 1988) I suggested that the random formation of something as 
complex as the Langton automaton (even with very generous assumptions) was out of the ques-
tion in our whole universe in the 20 billion years since the big bang, as the probability of 
formation with all this space and time available is only 1 chance in 10129. 
 

In response to Byl's proposed automaton, I found it necessary (Newman, 1990a) to retract 
some of the generosity given to Langton, but by doing so found that even Byl's automaton had 
only 1 chance in 1069 of forming anywhere in our universe since the big bang. 
 

Ludwig's automaton looks so simple as to be a sure thing in a universe as vast and old as 
ours is.  Indeed, by the assumptions used in doing my probability calculation for Byl's automa-
ton, we would have a Ludwig automaton formed every 7 x 10-15 seconds in our universe.   
 

However, an enormously favorable assumption is contained in this calculation C that all 
the carbon in the universe is tied up in 92-atom molecules which exchange material to try out 
new combinations as quickly as an atom can move the length of a molecule at room temperature. 
 If, however, we calculate the expected fraction of carbon that would actually be found in 92-
atom polymers throughout our universe, the expected time between formation of Ludwig 
automatons in our universe jumps to about 1086 years!  Thus it would still not be wise to put 
one's money on the random formation of self-reproduction even at this simple level. 
 

Besides the problem of formation time, the physics (transition rules) of these smaller 
automata was specially contrived to make the particular automaton work, and it is probably not 
good for anything else.  Since the automata of Langton, Byl and Ludwig were not designed to be 
universal constructors, self-reproduction typically collapses for any mutation in the instructions.  
To avoid this, the constructing mechanism in any practical candidate for the first self-reproducer 
will have to be much more flexible so that it can continue to construct copies of itself while it 
changes. 
 

The physics of such automata could be made more general by going back toward the 
larger number of states used in von Neumann's automaton.  Langton, for instance, has a signal 
for extending a data path in his information tape, but none for retracting one; a signal for a left-
turn, but none for a right-turn.  These could be included rather easily by adding additional chip 
states to his eight, thus making the physics more flexible.  Of course this would significantly 
increase the number of transition rules and the consequent complexity of his automaton.   
 

This, obviously, makes self-reproduction even less likely to have happened by chance.  
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But it would also help alleviate the problem that these simpler automata don't have a big enough 
vocabulary in their genetic information systems to be able to do anything but a very specialized 
form of self-reproduction, and they have no way to expand this vocabulary which was designed 
in at the beginning.  This problem seems to me a serious one for the evolution of growing levels 
of complexity in general. 
 

As for building an automaton that is more general in its constructing abilities and not tied 
to a particular physics especially contrived for it, Karl Sigmund (1993, pp. 27-39) has described 
an attempt by John Conway to use the environment of his game of "Life" as a substrate on which 
to design a universal constructor.  He succeeds in doing so, but the result is outrageously 
complex, back in the league with von Neumann's and Codd's automata. 
 

We should be able to design a somewhat general self-reproducing automaton on a 
substrate not especially designed for it.  This would be a good project for future research.  We 
would then have a better handle on what complexity appears to be minimal for significant self-
reproduction, and what would be the likelihood it could occur by chance in a universe such as 
ours. 
 

The environment in which each of these self-reproducing automata operates is empty in 
the sense that nothing else is around and happening.  By design, the sea of unused cells is 
quiescent.  This is certainly unlike the scenario imagined for the origin of biochemical life.  What 
will happen to our automata if they are bumped by or run into other objects in their space?  Are 
they too fragile to be real candidates for the hypothetical original self-reproducer?  The Langton 
automaton certainly is.  By running the program with a "pimple" placed on the surface of the 
automaton (i.e., the structure is touched by a single cell in any of the states 1-7), we find that the 
automaton typically "crashes" in about 30 time-steps (the time taken for the data to cycle once 
around the loop).  It appears that the automaton is very fragile or "brittle" rather than robust.  
This would certainly not be satisfactory in a real-life situation. 
 
Computer Viruses 
 

Mark Ludwig, PhD in elementary particle physics, proprietor of American Eagle 
Publications, and author of The Little Black Book of Computer Viruses (1991), has written a very 
stimulating book entitled Computer Viruses, Artificial Life and Evolution (1993).  Ludwig argues 
that computer viruses are really much closer to artificial life than anything else humans have 
produced so far, especially in view of the fact that such viruses have gotten loose from their 
creators (or been set loose) and, like the biochemical viruses for which they are named, are 
fending for themselves rather successfully in a hostile environment.   
 

Like the various cellular automata we discussed above, computer viruses have the ability 
to reproduce themselves.  In addition, they can typically hide themselves from "predators" (anti-
                     
 4. See also Spafford (1994). 
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virus programs) by lurking inside the instructions of some regular computer program which they 
have "infected."  They may also function as parasites, predators, or just clever annoyances as 
they ride programs from disk to disk, computer to computer, and user to user.  Some viruses (by 
design or not) damage files or programs in a computer's memory; others just clutter up memory 
or diskettes, or send humorous and irksome messages to the computer screen. 
 

So far as I know, no one claims that computer viruses arose spontaneously in the 
memories of computers.  But how likely would it be for something as complex as a simple virus 
to form by chance in the computer environment?   
 

Early in 1993, Ludwig sponsored "The First International Virus Writing Contest," 
awarding a prize for the shortest virus that could be designed having certain rather minimal 
function (Ludwig, 1993, pp 319-321).  He provides the code (computer program) for the virus 
that was grand prize winner and for several runners-up, plus a sample virus which he sent out 
with the original announcement of the contest (Ludwig, 1993, pp 322-331).  These programs all 
turned out to be over 100 bytes in length.   
 

Ludwig calculates for the shortest of these (101 bytes) that there are 10243 possible files 
of length 101 bytes.  If we could get all the 100 million PC users in the world to run their 
machines full-time with a program that generates nothing but 101-byte random sequences at 
1000 files per second, then in 10 years the probability of generating this particular virus is 2 x 10-

224 (ibid., p 254-5).  If they ran for the whole history of the universe, the probability would be 4 x 
10-214.  If all the elementary particles in our universe were converted into PCs generating 1000 
random 101-byte files per second, the probabily of forming this particular virus would be 6 x 10-

110 (ibid., p 255).  Obviously our universe does not have the probabilistic resources to generate 
this level of order by random assembly! 
 

Ludwig then discusses two much smaller programs.  One is a rather crude virus of 42 
bytes, which just copies itself on top of all the programs in a computer's directory.  He notes that 
one might just expect to form this virus in the history of the universe if all those elementary 
particles were PCs cranking out 1000 42-byte random files per second, but that if one only had 
the 100 million PCs and ten years for the job, the probability would be only 4 x 10-81 (ibid., pp 
254-5).  This would improve to 8 x 10-71 if one had the time since the big bang to work with. 
 

The smallest program Ludwig works with is not a virus, since it cannot make copies of 
itself that are saved to disk, but only copies that remain in memory so long as the computer is 
running.  This program is only 7 bytes long.  It could easily be formed in ten years with 100 
million PCs turning out 1000 7-byte sequences per second, but it would take a single computer 
about 2.5 million years to do so.   
 

It is doubtful that this is the long-sought self-reproducer that will show life arose by 
chance.  The actual complexity of this program is considerably greater than 7 bytes because it 
uses the copying routine provided by the computer.  The environment provided for computer 
viruses is much more helpful for self-reproduction than is the biochemical environment. 
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As in the case of cellular automata, we see that a random search for self-reproduction 

(before mutation and natural selection can kick in) is an extremely inefficient way to reach even 
very modest levels of organized complexity; but for naturalism, that is the only path available. 
 

Ludwig also considers forming a virus by accidental mutation of an existing computer 
program (Ludwig, 1993, pp 259-263).  This is an interesting discussion, but it tells us more about 
how a biochemical virus might get started in a world which already has a lot of life than it does 
about how life might get started in abiotic circumstances. 
 
Dawkins' "Weasel" Program 
 

Richard Dawkins claims that there is no need for a mind behind the universe.  Random 
processes, operating long enough, will eventually produce any level of order desired.  "Give 
enough monkeys enough time, and they will eventually type out the works of Shakespeare."   
 

If indeed we grant that we live in a universe totally devoid of mind, then something like 
this must be true.  And granting this, if we broaden our definition of "monkey" sufficiently to 
include anthropoid apes, then it has already happened!  An ape evolved into William Shake-
speare who eventually wrote C and his descendants typed C his immortal works!   
 

But seriously, this is merely to beg the question.  As Dawkins points out (Dawkins, 1987, 
pp 46-47), the time required to reasonably expect a monkey to type even one line from Shake-
speare C say "Methinks it is like a weasel" from Hamlet C would be astronomical.  To get any 
significant level of order by random assembly of gibberish is out of the question in a universe 
merely billions of years old and a similar number of light-years across. 
 

But Dawkins (who, after all, believes our universe was devoid of mind until mind 
evolved) claims that selection can vastly shorten the time necessary to produce such order.  He 
programs his computer to start with a line of gibberish the same length as the target sentence 
above and shows how the target may be reached by selection in a very short time.   
 

Dawkins accomplishes this (ibid., pp 46-50) by having the computer make a random 
change in the original gibberish and test it against the target sentence, selecting the closer 
approximation at each step and then starting the next step with the selected line.  For instance, 
starting with the line: 
 

WDLTMNLT DTJBSWIRZREZLMQCO P 
 
Dawkins' computer reaches its target in just 43 steps or "generations."  In two other runs starting 
with different gibberish, the same target is reached in 64 and 41 generations. 
 

This is impressive C but it doesn't tell us much about natural selection.  A minor problem 
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with Dawkins' program is that he has designed it to converge far more rapidly than real mutation 
and selection would.  I devised a program SHAKES (Newman, 1990b) which allows the operator 
to enter any target sentence plus a line of gibberish of the same length.  The computer then 
randomly chooses any one of the characters in the line of gibberish, randomly chooses what 
change to make in that character, and then tests the result against the target.  If the changed line 
is closer to the target than it was before the change, it replaces the previous gibberish.  If not, 
then the previous version remains.  Dawkins did something like this, but his version closes on its 
target far more rapidly.  For instance his version moves from 
 

METHINKS IT IS LIKE I WEASEL 
 
to  
 

METHINKS IT IS LIKE A WEASEL 
 
in just three generations (Dawkins, 1987, p 48).  I suspect that what Dawkins has done is that 
once the computer gets a particular character right, it never allows mutation to work on that 
character again.  That is certainly not how mutation works!  My version took several hundred 
steps to move across a gap like the one above because the mutation both had to randomly occur 
at the right spot in the line and randomly find a closer letter to put in that place.  My runs 
typically took over a thousand steps to converge on the target from the original gibberish. 

But a far more serious problem with Dawkins' simulation is that real mutation and natural 
selection don't have a template to aim at unless we live in a designed universe (see Ludwig, 
1993, pp 256-259).  A better simulation would be an open-ended search for an unspecified but 
meaningful sentence, something like my program MUNSEL (Newman, 1990b).  This program 
makes random changes in the length and the characters of a string of letters without a template 
guiding it to some predetermined result.  Here a randomizing function either adds a letter or 
space to one end of the string, or changes one of the existing letters or spaces to another.  This is 
intended to emulate the action of mutation in changing the nucleotide bases in a DNA molecule 
or the amino acids in a protein. 
 

In this program, natural selection is simulated by having the operator manually respond 
as to whether or not the resulting string consists of nothing but English words.  If it does, then 
the mutant survives (is retained); if it doesn't, the mutant dies (is discarded).  This could be done 
more efficiently (and allow for much longer computer runs) if one would program the computer 
to use a spell-checker from a word-processing program to make these decisions instead of a 
human operator. 
 

Even more stringent requirements might be laid on the mutants to simulate the 
development of higher levels of order.  For instance, the operator might specify that each 
successful mutant conform to English syntax, and then that it make sense on larger and larger 
size-scales.  This would give us a better idea of what mutation and natural selection can do in 
producing such higher levels of organization as would be necessary if macroevolution is really to 
work. 
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Ray's "Tierra" Environment 
 

One of the most interesting and impressive attempts at the computer simulation of 
evolution I have seen so far is the ongoing experiment called "Tierra," constructed by Thomas 
Ray at the University of Delaware (Ray, 1991).  Ray designed an electronic organism that is a 
small computer program which copies itself.  In this it resembles cellular automata and 
particularly computer viruses.  It differs from these in that it lives in an environment C "the 
soup," also designed by Ray C which explicitly includes both mutation and a natural competition 
between organisms.  
 

To avoid problems that can arise when computer viruses escape captivity, the soup is a 
"virtual computer," a text file that simulates a computer, so the programs are not actually 
roaming around loose in the computer's memory.  For most of Ray's runs, the soup contains 
60,000 bytes, equivalent to 60,000 instructions.  This will typically accomodate a population of a 
few hundred organisms, so the dynamics will be those of a small, isolated population. 
 

To counter the problem of fragility or brittleness mentioned in our discussion of cellular 
automata, Ray invented his own computer language.  This "Tierran" language is more robust 
than the standard languages, so not as easily disrupted by mutations.  It is a modification of the 
very low-level assembly language used by programmers, with two major differences:  (1) it has 
very few commands C only 32 (compare the assembly language for 486 computers, with nearly 
250 commands [Brumm, 1991, 136-141]) C and (2) it addresses other locations in memory by 
the use of templates, rather than address numbers C a feature modelled on the biochemical 
technique by which molecules "find" each other.  The program is set up so the operator can vary 
the maximum distance that an organism will search to locate a needed template. 
 

Ray starts things off by introducing a single organism into the soup.  There it begins to 
multiply, with the mother and resulting daughter organisms taking turns at copying themselves 
until they have nearly filled the available memory.  Once the level of fullness passes 80%, a 
procedure kicks in which Ray calls "the Reaper."  This keeps the soup from overcrowding by 
killing off organisms one-by-one, working down from the top of a hit list.  An organism at birth 
starts at the bottom of this list and moves upward as it ages, but will move up even faster if it 
makes certain errors in copying.  Alternatively, it can delay moving upward somewhat if it can 
successfully negotiate a couple of difficult procedures. 
 

The master computer which runs the simulation allows each organism to execute its own 
instructions in turn.  The turn for each organism can be varied in different runs of the experiment 
so as to make this allowance some fixed number of instructions per turn, or dependent on the size 
of the organism so as to favor larger creatures, smaller ones, or be size-neutral.  
 

Ray introduces mutation into the system by fiat, and can change the rate of mutation from 
zero (to simulate ecological situations on a timescale much shorter than the mutation rate) up to 
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very high levels (in which the whole population perishes).  
 

One form of mutation is designed to simulate that from cosmic rays.  Binary digits are 
flipped at random locations in the soup, most of which will be in the organisms' genomes.  The 
usual rate which Ray sets for this is one mutation for every 10,000 instructions executed. 
 

Another form of mutation is introduced into the copying procedure.  Here a bit is 
randomly flipped during reproduction (typically for every 1000 to 2500 instructions transfered 
from mother to daughter).  This rate is of similar magnitude to the cosmic ray mutation. 

A third source of mutation Ray introduces is a small level of error in the execution of 
instructions, making their action slightly probabilistic rather than strictly deterministic.  This is 
intended to simulate occasional undesired reactions in the biochemistry (Ray, 1994, p 187).  Ray 
does not specify the rate at which error in introduced by this channel. 
 

Ray's starting organism consists of 80 intructions in the Tierran language, each 
instruction being one byte (of 5 bits) long.  The organism begins its reproduction cycle by 
reading and recording its length, using templates which mark the beginning and end of its 
instruction set.  It then allocates a space in the soup for its daughter, and copies its own instruc-
tions into the allocated space, using other templates among its instructions for the needed jumps 
from place to place in its program (subroutines, loops, etc.).  It ends its cycle by constituting the 
daughter a separate organism.  Because the copying procedure is a loop, the original unmutated 
organism actually needs to execute over 800 instructions before it completes one full reproduc-
tion.  Once there are a number of organisms in the soup, this may require an organism to use 
several of its turns to complete one reproduction. 
 

Ray has now run this experiment on his own personal computer and on much faster 
mainframe computers many times, with some runs going for billions of instructions.  (With 300 
organisms in the soup, 1 billion instructions would typically correspond to some four thousand 
generations.)  Ray has seen organisms both much larger and much smaller than the original 
develop by mutation, and some of these have survived to do very well in the competition.   
 

Ray has observed the production of parasites, which have lost the instructions for copying 
themselves, usually due to a mutation in a template that renders it useless.  These are sterile in 
isolation, but in the soup they can often use the copy procedure of a neighbor by finding its 
template.  This sort of mutant typically arises in the first few million instructions executed in a 
run (less than 100 generations after the soup fills).  Longer runs have produced (1) organisms 
with some resistance to parasites; (2) hyper-parasites, which cause certain parasites to reproduce 
the hyper-parasite rather than themselves; (3) social hyper-parasites, which can reproduce only in 
communities; and (4) cheaters, that take advantage of the social hyper-parasites.  All these Ray 
would classify as microevolution.   
 

Under the category of macroevolution, Ray mentions one run with selection designed to 
favor large-sized organisms, which produced apparently open-ended size increase and some 
organisms longer than 23 thousand instructions.   
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Ray notes two striking examples of novelty produced in his Tierra simulations:  (1) an 

unusual procedure one organism uses to measure its size, and (2) a more efficient copying 
technique developed in another organism by the end of a 15-billion-instruction run.  In the 
former of these, the organism, having lost its template that locates one end of its instructions, 
makes do by using a template located in the middle and multiplying this length by two to get the 
correct length.  In the latter, the copying loop has become more efficient by copying three 
instructions per loop instead of just one, saving the execution of several steps. 
 

With size-neutral selection, Ray has found periods of stasis punctuated by periods of 
rapid change.  Typically, the soup is first dominated by organisms with length in the order of 80 
bytes for the first 1.5 billion instructions executed.  Then it comes to be dominated by organisms 
5 to 10 times larger in just a few million more instructions.  In general it is common for the soup 
to be dominated by one or two size-classes for long periods of time.  Inevitably, however, that 
will break down into a period (often chaotic) in which no size dominates and sometimes no 
genotypes are breeding true.  This is followed by another period of stasis with one or two other 
size classes now dominating. 
 

Ray's results are impressive.  But what do they mean?  For the origin of life, not much.  
Ray has not attempted to simulate the origin of life, and his creatures at 80 bytes in length are 
complex enough to be very unlikely to form by chance.  Each byte in Tierran has 5 bits or 32 
combinations, so there are 3280 combinations for an 80-byte program, which is 2 x 10120.  
Following Ludwig's scheme of using all the earth's 100 million PCs to generate 1000 80-byte 
combinations per second, we would need 7 x 10100 years for the job.  If all 1090 elementary 
particles were turned into computers to generate combinations, it would still take 7 x 1010 years, 
several times the age of the universe.  Not a likely scenario, but one might hope a shorter 
program that could permanently start reproduction might kick in much earlier. 
 

What about the type of evolution experienced in the Tierra environment?  Is it such that 
we would expect to reach the levels of complexity seen in modern life in the available timespan? 
 It is not easy to answer this.  The Tierra simulation is typically run with a very high rate of 
mutation, perhaps on the order of 1 in 5000 counting all three sources of mutation.  Copying 
errors in DNA are more like 1 in a billion (Dawkins, 1987, p. 124), some 200,000 times smaller. 
 Thus we get a lot more variation in a short time and many more mutations per generation per 
instruction.  Ray justifies this by claiming that he is emulating the hypothetical RNA world 
before the development of the more sophisticated DNA style of reproduction, and that a much 
higher level of mutation is to be expected.  Besides, for the sake of simulation, you want to have 
something to study within the span of reasonable computer times.  All this is true, but there is 
also the danger of simulating a world that is far more hospitable to evolution than ours is (see the 
remark of Pattee and Ludwig's discussion in Ludwig, 1993, pp. 162-164). 
 

The consequences of mutation seem considerably less drastic in Tierra also, making that 
world especially favorable for evolution.  No organism in Tierra dies before it gets a shot at 
reproducing, whereas dysfunction, disease, predators and accidents knock off lots of these (fit or 
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not) before they reproduce in our world.  This effectively raises the mutation rate in Tierra still 
higher while protecting against some of its dangers, and increases the chance that an organism 
may be able to hop over a gap of dysfunction to land on an island of function.   
 

In Tierra, the debris from killed organisms remains in the environment.  But instead of 
being a danger to living organisms as it so often is in our world, the debris is available as 
instructions for parasites whose programs are searching the soup for templates.  This enormously 
raises the mutation rate for parasites, producing something rather like sexual reproduction in a 
high mutation environment. 
 

Tierran organisms have rather easy access to the innards of other organisms.  The 
program design allows them to examine and read the instructions of their neighbors, but not 
write over them.  The organisms are designed to be able to search in either direction from their 
location some distance to find a needed template.  This is typically set at 200-400 instructions, 
but on some runs has been as high as 10,000, giving access to one-third the entire environment!  
This feature is not used by any organism whose original templates are intact, but it provides the 
various types of parasites with the opportunity to borrow genetic material from up to one-third of 
the creatures in Tierra, and probably permits many of them to escape their parasitic lifestyle with 
a whole new set of genes. 
 

The innards themselves, whether part of a living or dead organism, are all nicely usable 
instructions.  Every byte in each organism is an instruction, and once an organism has inhabited a 
particular portion of the soup, its instructions are left behind after its death until written over by 
the instructions of another organism inhabiting that space at a later time.   
 

The Tierran language is very robust; every mutation of every byte produces a mutant byte 
which makes sense within the system.  Gibberish only arises in the random arrangement of these 
bytes rather than in any of the bytes themselves.  Thus, the Tierran language cannot help but 
have meaning at the level of words.  The real test, then, for macroevolution in Tierra will be how 
successful it is in producing meaning at the level of sentences, and this does not appear 
impressive so far. 
 

There is a need for someone with facility in reading assembly language to take a look at 
the Tierran mutants to see what evolved programs look like.  How do these compare with the 
programs found in the DNA of biochemical life?  Are they comparable in efficiency, in elegance 
and in function?  Does the DNA in our world look as though biochemical life has followed a 
similar history to that of these Tierran creatures? 
 

Thomas Ray's experiment needs to be continued, as it is a sophisticated procedure for 
demonstrating what an evolutionary process can actually accomplish.  But the details of its 
design need to be continually revised to make it more and more like the biochemical situation.  
                     
5. Some helpful attempts in this direction have been made by Adami and Brown (1994) and 
Shanahan (1994). 
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Ray has shown that the Tierra environment can occasionally produce apparent design by acci-
dent.  Can it produce enough of this to explain the proliferation and sophistication of apparent 
design we actually have in biochemical life on earth? 
 

In a more recent paper, Ray has begun an attempt to mimic multicellular life (Thearling 
and Ray, 1994).  So far, they have been unable to produce organisms in which the cells are 
differentiated.  And they have skipped the whole problem of how to get from unicellular to 
multicellular life.   
 

One might wish to say that the Tierran language is too restricted to be able to accomplish 
all the things that have happened in the history of life on earth.  But Maley (1994) has shown that 
the Tierran language is computationally complete C that it is equivalent to a Turing machine, so 
that in principle it can accomodate any function that the most sophisticate computer can perform. 
 Of course, it might take an astronomically longer time to accomplish this than a really good 
computer would, but that brings us back to the question of whether simulations might be more 
efficient or less efficient than biochemistry to produce the sort of organization we actually find in 
nature.  Until we can answer this, it will be hard to use AL to prove that life in all its complexity 
could or could not have arisen in our universe in the time available. 
 
Conclusions 
 

We've made a rather rapid (and incomplete) tour of some of the things that are happening 
in Artificial Life research.  The field is growing and changing rapidly, but we should have a 
better handle in just a few years on the questions of how complex self-reproduction is and what 
random mutation and natural selection are capable of accomplishing.  At the moment, things 
don't look too good for the "Blind Watchmaker" side. 
 

The definition of self-reproduction is somewhat vague, and can be made much too easy 
(compared to the biochemical situation) in some computer simulations by riding on the copying 
capabilities of the host computer and its language.  We need to model something that is much 
more similar to biochemistry. 
 

A self-reproducing automaton apparently needs to be much closer to a universal 
constructor than the simplest self-reproducers that have been proposed.  In order that it not 
immediately collapse when subjected to any mutation, it must be far more robust.  It must be 
able to continue to construct itself as it changes from simple to complex.  In fact, it must 
somehow change both itself and its instructions in synchronism in order to survive (continue to 
reproduce) and develop the levels of complexity seen in biochemical life.  This is a tall order 
indeed for any self-reproducer that could be expected to form in a universe as young and as small 
as ours is.  Of course, it can certainly be done if we have an infinite number of universes and an 
infinite time-span to work with, but there is no evidence that points in this direction. 
                     
6. See Dewdney (1989) for a discussion of Turing machines. 
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In biochemical life, multicellular organisms have a rather different way of functioning 

than do single cell creatures, and a very different way of reproducing.  Clearly, some real change 
in technique is introduced at the point of transition from one to the other, that is, at the Cambrian 
explosion.  So far, nothing we have seen in computer simulations of evolution looks like it is 
capable of the things that happened then. 
 

At the moment, AL looks more like an argument for design in nature than for a universe 
without it. 
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